Navigation

Raumcon-Seiten

Benutzer im Chat: 8

28. Mai 2020, 17:50:49
Raumcon
Willkommen Gast. Bitte einloggen oder registrieren. Haben Sie Ihre Aktivierungs E-Mail übersehen?

Einloggen mit Benutzername, Passwort und Sitzungslänge
Neuigkeiten: Unsere neue Tasse zu SpaceX - Beyond Frontiers im Raumcon-Shop
   Erweiterte Suche

Autor Thema: Neutronensterne, Pulsare, Magnetare  (Gelesen 98369 mal)

websquid

  • Gast
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #200 am: 03. April 2013, 22:01:09 »
Ja, ich habe mich bei der Beschreibung auch ein wenig an das Funkeln von Sternen erinnert gefühlt, wie wir es so am Himmel sehen. Vielleicht ist es ja auch so, dass nicht zu jeder Zeit alle erwarteten Beugungs-/Brechungseffekte gleichzeitig auftreten, sondern immer nur ein bestimmter Pfad verfolgt wird (vielleicht weil Pulsare so extrem kompakt sind?).

Aber ich glaub wir stochern da gerade genau so im Dunkeln wie die Wissenschaftler selbst. Wobei vielleicht wissen die mittlerweile schon wieder mehr... oder glauben zumindest mehr zu wissen, sonst würde Kowaljow wohl keine so nebulösen Andeutungen von wegen "clevere Technik" etc machen :-\

GG

  • Gast
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #201 am: 04. April 2013, 09:29:58 »
"Adaptive Antennen" ;)

websquid

  • Gast
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #202 am: 14. April 2013, 23:40:37 »
Noch eine Idee von mir dazu:
Eigentlich wurden ja zwei unerwartete Phänomene auf einmal beobachtet...
1. Statt einer großen Streufläche gab es einzelne, scharfe Punkte
2. Statt eines statischen Bilds war eine Bewegung dieser Punkte sichtbar

1. Folgt definitiv aus einer anderen Struktur des interstellaren Mediums als erwartet. Aber für 2. ist die Quelle ja eigentlich unklar - folgt die Dynamik aus einer Dynamik des ISM? Oder verhält sich das ISM als statische Optik, aber dafür ist die Strahlungszone des Pulsars dynamisch? Es könnte ja sein, dass durch die "radiooptischen" Eigenschaften des ISM bereits kleine Veränderungen der Strahlungsquelle zu deutlich sichtbaren Bewegungen des scheinbaren Bildes führen.

Falls wir es tatsächlich immer noch mit einem statischen Verhalten des ISM zu tun haben, wäre dies eine sehr einfache Möglichkeit, damit hochaufgelöste Bilder aufzunehmen - man müsste ja "nur" die einzelnen Punkte zur Deckung bringen, bzw bei flächigen Quellen die sichtbaren Flächen übereinander legen (markante, besonders helle Punkte sollten sich ja finden lassen). Vielleicht geht das ja ganz einfach ;)

Offline redmoon

  • Portal Redakteur
  • Gold Member
  • *****
  • Beiträge: 4293
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #203 am: 27. April 2013, 20:41:35 »
Hallo,

ein Pulsar bestätigt die Allgemeine Relativitätstheorie von Albert Eistein : 
http://www.raumfahrer.net/news/astronomie/27042013201254.shtml 

Schöne Grüße aus Hamburg - Mirko
Nicht ewig bleibt die Menschheit auf der Erde - Konstantin Eduardowitsch Ziolkowski

Online Gertrud

  • Moderator
  • Gold Member
  • *****
  • Beiträge: 7486
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #204 am: 15. August 2013, 08:56:52 »
Hallo Zusammen,
in dem Zentrum unserer Milchstraße ist der Pulsar PSR J1745-2900 entdeckt worden. Er gehört wegen dem extremen starken Magnetfeld zu den Magnetaren.
http://www.raumfahrer.net/forum/smf/index.php?topic=624.msg263118#new
Quelle:
http://www.mpg.de/7499403/magnetar_zentrum_milchstrasse

Mit den besten Grüßen
Gertrud
die Erklärung zu meinem Avatar:
http://de.wikipedia.org/wiki/NGC_2442
http://antwrp.gsfc.nasa.gov/apod/ap070315.html
***
Die Gabe des Staunens lässt uns die Welt aufgeschlossener sehen und ihre Wunder würdigen. (Richard Henry Lee)

Online Gertrud

  • Moderator
  • Gold Member
  • *****
  • Beiträge: 7486
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #205 am: 29. August 2013, 22:41:03 »
Hallo Zusammen,

Einstein@Home findet in Archivdaten 24 bisher unbekannte Pulsare.

 http://www.aei.mpg.de/480840/Einstein_Home_24PSRs_PMPS

Mit den besten Grüßen
Gertrud
die Erklärung zu meinem Avatar:
http://de.wikipedia.org/wiki/NGC_2442
http://antwrp.gsfc.nasa.gov/apod/ap070315.html
***
Die Gabe des Staunens lässt uns die Welt aufgeschlossener sehen und ihre Wunder würdigen. (Richard Henry Lee)

Online Gertrud

  • Moderator
  • Gold Member
  • *****
  • Beiträge: 7486
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #206 am: 13. November 2015, 21:15:41 »
Hallo Zusammen,

Das Fermi Gamma-Ray Space Telescope hat den ersten Gammapulsar entdeckt.

Der Pulsar PSR J0540-6919  liegt in den Außenbezirken vom Tarantel-Nebel in der Großen Magellanschen Wolke und ist 163.000 Lichtjahre entfernt. Der Tarantula Nebula ist die größte, aktivste und komplexesten Sternentstehungsregion in unserer galaktischen Nachbarschaft.  Es wurde als eine helle Quelle von Gammastrahlung, der energiereichste Form von Licht, früh in der Fermi-Mission identifiziert. Die  Astronomen führten dies zunächst auf eine Kollisionen der subatomaren Teilchen zurück,  auf  von Supernova-Explosionen erzeugten Supernova-Schockwellen.
Es war bisher  angenommen worden, das etwa die Hälfte der Gammastrahlen der X-Ray Helligkeit aus dem Nebel kamen. Jetzt ist klar, das der Pulsar PSR J0540-6919 etwa für die Hälfte der Gammastrahlen verantwortlich ist. Die  Gammastrahlen Impulse von J0540-6919 haben 20-mal  mehr Intensität wie der bisherigen Rekordhalter, der Pulsar in dem berühmten Krebsnebel. Dennoch haben sie etwa ein ähnliches Niveau der Funk, optische und Röntgenstrahlung.

In Tarantula- Nebula drehen sich zwei Pulsare, PSR J0540-6919 (J0540 kurz) und PSR J0537-6910 (J0537), die mit Hilfe von den Einstein  und Rossi X-ray Timing Explorer (RXTE) Satelliten entdeckt wurden. J0540 dreht sich knapp 20 Mal pro Sekunde, während J0537 wirbelt auf fast 62-mal pro Sekunde, die schnellste bekannte Rotationsperiode für einen junge Pulsar.

Credit: NASA's Goddard Space Flight Center; background: ESO/R. Fosbury (ST-ECF)

Die Gammastrahlenansicht wird vom selben Bereich oberhalb der sichtbaren Wellenlängen gezeigt. Hellere Farben zeigen eine größere Anzahl von Gammastrahlung mit Energien zwischen 2 und 200 Milliarden Elektronenvolt. Zum Vergleich, sichtbares Licht im Bereich zwischen 2 und 3 Elektronenvolt. Die beiden Pulsare, PSR J0540-6919 (links) und PSR J0537-6910, heben sich deutlich ab.
Credit: NASA/DOE/Fermi LAT Collaboration


https://www.youtube.com/watch?v=9yKJBBvgf7U&feature=youtu.be

http://www.nasa.gov/feature/goddard/nasas-fermi-satellite-detects-first-gamma-ray-pulsar-in-another-galaxy

Mit den besten Grüßen
Gertrud
die Erklärung zu meinem Avatar:
http://de.wikipedia.org/wiki/NGC_2442
http://antwrp.gsfc.nasa.gov/apod/ap070315.html
***
Die Gabe des Staunens lässt uns die Welt aufgeschlossener sehen und ihre Wunder würdigen. (Richard Henry Lee)

Offline adam8matek

  • Newbie
  • *
  • Beiträge: 1
    • zasuwy burzowe
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #207 am: 27. November 2015, 10:06:36 »
Ich gebe mich bewegt, ein schönes Kunststück

Online -eumel-

  • Raumcon Moderator
  • Gold Member
  • *****
  • Beiträge: 14337
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #208 am: 26. März 2019, 02:46:27 »
Wer rechnet mit bei Einstein@home?
Ich schon!  :)


Das Bürgerwissenschaftsprojekt Einstein@Home sucht nach Gravitationswellen und Pulsaren.
Dazu werden unter anderem Daten vom Fermi Gamma-ray Space Teleskop der NASA verarbeitet.
Dabei wurde 2017 der Puslar J0002+6216 entdeckt, der mit 4 Millionen km/h durchs All rast.

Er stößt einen glühenden Schweif aus, der inzwischen 13 Lichtjahre lang ist.
J0002 liegt etwa 6.500 Lichtjahre entfernt im Sternbild Cassiopeia und rotiert 8,7 Mal pro Sekunde.

Durch Aufnahmen des Very Large Array Radio Teleskops läßt sich der Schweif bis zu seinem Entstehungsort zurück verfolgen: Dem 53 Lichtjahre entfernten Zentrum eines Supernova-Überrests CTB 1.

Astronomen vermuten, dass der Pulsar bei der Supernova Explosion von CTB 1 so schnell beschleunigt wurde.
Bei dieser Geschwindigkeit wird der Pulsar unsere Galaxie verlassen.


https://www.youtube.com/watch?v=5pGXqrovaFo


Weitere Informationen

Online Gertrud

  • Moderator
  • Gold Member
  • *****
  • Beiträge: 7486
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #209 am: 14. Dezember 2019, 14:30:18 »
Hallo Zusammen,

NICER an Bord der ISS liefert die besten Pulsarmessungen aller Zeiten.

Astrophysiker zeichnen das Lehrbuchbild von Pulsaren dank des  Neutron star Interior Composition Explorer (NICER), einem Röntgenteleskop an Bord der Internationalen Raumstation (ISS), neu. Mithilfe von NICER-Daten haben Wissenschaftler die ersten präzisen und zuverlässigen Messungen sowohl der Größe als auch der Masse eines Pulsars sowie die allererste Karte von Brennpunkten auf der Oberfläche erhalten.

Der betreffende Pulsar, J0030 + 0451 (kurz J0030), liegt in einer Region des 1.100 Lichtjahre entfernten Sternbild Fische. Als NICER das Gewicht und die Proportionen des Pulsars maß, stellte er fest, dass die Formen und Positionen von millionenschweren „Hot Spots“ auf der Pulsaroberfläche viel seltsamer sind, als allgemein angenommen.
Die Pulsare, eine Klasse von Neutronensternen, drehen sich Hunderte Male pro Sekunde und lenken bei jeder Umdrehung Energiestrahlen auf uns zu. J0030 dreht sich 205 Mal pro Sekunde.
Seit Jahrzehnten versuchen Wissenschaftler herauszufinden, wie Pulsare genau funktionieren. Im einfachsten Modell hat ein Pulsar ein starkes Magnetfeld, das einem Haushaltsstabmagneten ähnelt. Das Feld ist so stark, dass es Partikel von der Pulsaroberfläche reißt und diese beschleunigt. Einige Partikel folgen dem Magnetfeld und treffen auf die gegenüberliegende Seite, erwärmen die Oberfläche und erzeugen heiße Stellen an den Magnetpolen.
Der gesamte Pulsar leuchtet im Röntgenlicht schwach, aber die heißen Stellen sind heller. Während sich das Objekt dreht, bewegen sich diese Punkte wie die Strahlen eines Leuchtturms in und aus dem Blickfeld und erzeugen extrem regelmäßige Schwankungen der Röntgenhelligkeit des Objekts. Die neuen NICER-Studien von J0030 zeigen jedoch, dass Pulsare nicht so einfach sind.
Unter Verwendung der NICER-Beobachtungen von Juli 2017 bis Dezember 2018 kartierten zwei Gruppen von Wissenschaftlern die Hotspots von J0030 mithilfe unabhängiger Methoden und ermittelten ähnliche Ergebnisse hinsichtlich der Masse und Größe.
Ein Team unter der Leitung von Thomas Riley, Doktorand in Computerastrophysik, und Anna Watts, Professorin für Astrophysik an der Universität Amsterdam, ermittelte, dass der Pulsar etwa das 1,3-fache der Sonnenmasse und einen Durchmesser von 25,4 Kilometern hat.
Cole Miller, Astronomieprofessor an der University of Maryland (UMD), der das zweite Team leitete, stellte fest, dass J0030 etwa das 1,4-fache der Sonnenmasse und etwas größer ist und eine Breite von 26 Kilometern aufweist.
NICER misst die Ankunft jedes Röntgenstrahls von einem Pulsar auf mehr als hundert Nanosekunden, eine Genauigkeit, die etwa 20-mal höher ist als die bisher verfügbare, sodass Wissenschaftler diesen Effekt zum ersten Mal nutzen können.

Der Blick von der Erde aus schaut auf die nördliche Hemisphäre von J0030.
Die Forscher identifizierten bis zu drei „Hot Spots“, alle auf der südlichen Hemisphäre.
Thomas Riley und seine Kollegen führten eine Reihe von Simulationen mit überlappenden Kreisen unterschiedlicher Größe und Temperatur durch, um die Röntgensignale wiederherzustellen. Die Analyse des niederländischen Supercomputers Cartesius dauerte weniger als einen Monat, auf einem modernen Desktop-Computer wären jedoch rund 10 Jahre erforderlich gewesen. Ihre Lösung identifiziert zwei heiße Punkte, einen kleinen und kreisförmigen und einen langen und sichelförmigen.
Cole Millers Gruppe führte ähnliche Simulationen mit Ovalen unterschiedlicher Größe und Temperatur auf dem UMD Deepthought2-Supercomputer durch. Sie fanden zwei mögliche und gleich wahrscheinliche Punktkonfigurationen. Eines hat zwei Ovale, die dem Muster von Rileys Team sehr nahe kommen. Die zweite Lösung fügt einen dritten, kühleren Punkt hinzu, der leicht schräg zum Südpol des Pulsars liegt.

Das wichtigste wissenschaftliche Ziel von NICER besteht darin, die Massen und Größen mehrerer Pulsare genau zu bestimmen. Mit diesen Informationen werden Wissenschaftler endlich in der Lage sein, den Materiezustand in den Kernen von Neutronensternen zu entschlüsseln, die durch enormen Druck und Dichte zerkleinert werden und auf der Erde nicht repliziert werden können.
Die Arbeit zeigt, das NICER auf dem richtigen Weg ist, um bei der Beantwortung einer bleibenden Frage in der Astrophysik zu helfen: Welche Form hat Materie in den ultradichten Kernen von Neutronensternen?
Cole Miller, Astronomieprofessor sagte, das gesamte NICER-Team hat einen wichtigen Beitrag zur Grundlagenphysik geleistet, die in terrestrischen Labors nicht zu untersuchen ist.


https://www.youtube.com/watch?v=zukBXehGHas&feature=emb_logo
Credit: NASA's Goddard Space Flight Center
Quellen:
https://www.nasa.gov/feature/goddard/2019/nasa-s-nicer-delivers-best-ever-pulsar-measurements-1st-surface-map
https://www.surf.nl/en/dutch-national-supercomputer-cartesius
http://hpcc.umd.edu/hpcc/dt2.html
https://iopscience.iop.org/journal/2041-8205/page/Focus_on_NICER_Constraints_on_the_Dense_Matter_Equation_of_State

Beste Grüße Gertrud
die Erklärung zu meinem Avatar:
http://de.wikipedia.org/wiki/NGC_2442
http://antwrp.gsfc.nasa.gov/apod/ap070315.html
***
Die Gabe des Staunens lässt uns die Welt aufgeschlossener sehen und ihre Wunder würdigen. (Richard Henry Lee)

Offline Rücksturz

  • Portal Redakteur
  • Gold Member
  • *****
  • Beiträge: 2085
Re: Neutronensterne, Pulsare, Magnetare
« Antwort #210 am: 12. April 2020, 15:39:38 »
Nachtrag:

"Eine neue Theorie für die Entstehung von Magnetaren

Magnetare sind Neutronensterne mit den stärksten Magnetfeldern, die im Universum gemessen werden – ihr Ursprung ist aber umstritten. Ein Team von Wissenschaftlern aus Paris und dem Max-Planck-Institut für Astrophysik kann die Entstehung dieser gigantischen Felder nun durch Verstärkung anfänglich vorhandener, schwacher Felder erklären, wenn die Neutronensterne, die in kollabierenden massereichen Sternen entstehen, schnell rotieren. Eine Pressemitteilung des Max-Planck-Instituts für Astrophysik."


3D-Momentaufnahmen der Magnetfeldlinien in der konvektiven Zone im Inneren eines neugeborenen Neutronensterns. Die blauen (roten) Flächen stellen nach innen (außen) gerichtete Plasmaströmungen dar. Links: für schnelle Rotationsperioden von einigen Millisekunden wurde ein starker Dynamo entdeckt, wobei die Dipolkomponente 1015 Gauss erreicht. Rechts: bei langsamer Rotation ist das Magnetfeld bis zu zehnmal schwächer.
(Bild: CEA Sacley)


Weiter in der Pressemitteilung des Max-Planck-Instituts für Astrophysik:
https://www.raumfahrer.net/news/astronomie/14032020114223.shtml

Viele Grüße
Rücksturz