Happy Anniversary, Perseverance! Fünf Jahre Forschung auf dem Mars

Am 18. Februar 2021 landete der Marsrover Perseverance im Krater Jezero. Technisch und wissenschaftlich ist die Mission Mars 2020 ein großer Erfolg – und sie dauert noch an. Das DLR ist unter anderem an zwei zentralen Experimenten beteiligt.
Eine Veröffentlichung des Deutschen Zentrums für Luft- und Raumfahrt DLR.

Quelle: DLR/Aktuelles/Nachrichten/2026, 19. Februar 2026

Ein besonderes Selfie: Marsrover Perseverance am Felsen „Cheyava Falls“
Perseverance, der Marsrover der NASA, hat am 23. Juli 2024 dieses „Selfie“ aufgenommen, dem 1.218. Marstag (Sol) der Mission. Es besteht aus 62 Einzelbildern. Links vom Rover, mittig im unteren Bilddrittel, befindet sich der pfeilspitzenförmige Felsen mit dem Spitznamen „Cheyava Falls“. Das kleine dunkle Loch im Felsen markiert die Stelle, an der Perseverance eine Kernprobe entnahm. Diese befindet sich nun in einem Probenröhrchen im Inneren des Rovers. Die Untersuchung dieser Probe in Laboren auf der Erde könnte Aufschluss darüber geben, ob es auf dem Mars in ferner Vergangenheit mikroskopisches Leben gab. Der weiße Fleck rechts neben dem Loch zeigt, wo der Rover einen Teil der Oberfläche abgetragen hat, um die Zusammensetzung des Gesteins mit wissenschaftlichen Instrumenten zu untersuchen.
Credit: NASA / JPL-Caltech / Malin Space Science Systems (MSSS)

Seit fünf Jahren erforscht der NASA-Rover Perseverance nun den Jezero-Krater auf dem Mars. Dort landete er am 18. Februar 2021 – seitdem hat er mehrere Dutzend Kilometer zurückgelegt und eine Vielzahl an Forschungsaufgaben im Jezero-Krater erledigt. Und fertig ist er noch nicht. Nun feiern die US-amerikanisches Raumfahrtbehörde NASA und alle wissenschaftlich sowie technologisch Beteiligten das fünfjährige Jubiläum des fleißigen Rovers auf dem Roten Planeten. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) ist an wissenschaftlichen Aufgaben und zentralen Instrumenten der Mission Mars 2020 und dem Rover Perseverance beteiligt. Dabei bringt das DLR langjährige Erfahrungen in der Entwicklung, Kalibrierung, Datengewinnung und -auswertung bei der Planetenexploration vor Ort auf der Marsoberfläche ein. Die enge internationale Zusammenarbeit zeigt, wie europäische und US-amerikanische Forschungseinrichtungen gemeinsam grundlegende Fragen zur Geschichte des Mars bearbeiten: War der Planet einst lebensfreundlich? Und finden sich Spuren früher biologischer Aktivität? Was können wir für zukünftige astronautische Marsmissionen lernen?

Stetig und beharrlich unterwegs – Perseverance auf dem Mars
Perseverance heißt Beharrlichkeit. Ein Name, der passt. In den Jahren auf der Marsoberfläche hat der Rover schon vier wissenschaftliche Kampagnen vollständig abgeschlossen und befindet sich in seiner fünften. Er hat mehr als 40 Kilometer zurückgelegt und über 30 Gesteins-, Regolith- und Atmosphärenproben gesammelt. Vor allem hat der Rover den Sedimentfächer eines ehemaligen Flussdeltas untersucht – eine geologische Umgebung, die besonders vielversprechend für die Suche nach Spuren früheren mikrobiellen Lebens auf dem Roten Planeten ist. Perseverance erkundete außerdem den vulkanischen Kraterboden, dann die Sedimente des Flussdeltas und befindet sich gegenwärtig hinter dem Kraterrand von Jezero. Dort gibt es wieder ganz anderes Gestein, das aus der tiefen Kruste des Mars bei der Entstehung des Kraters vor 3,9 Milliarden Jahren nach oben geschleudert wurde. Seit fünf Jahren überträgt Perseverance außerdem regelmäßig hochauflösende Bild-, Spektral- und Umweltdaten vom Mars zur Erde.

Aktivitäten des Rovers im Überblick

  • 33 Proben gesammelt (Gestein, Regolith und Atmosphärengase)
  • Zurückgelegte Strecke: von der Landestelle auf dem Kraterboden über die Sediment-Fächer des Jezero-Deltas, das Jezero-Ufergebiet und den Kraterrand bis in die Region Nili Planum
  • Untersuchung der geologischen Geschichte des Mars
  • Dokumentation des Klimas
  • Bereitstellung der Datenbasis für grundlegende Erkenntnisse über die dynamischen Ursprünge, die Entwicklung und die Bewohnbarkeit eines terrestrischen Planeten wie dem Mars
  • Erfolgreiche Demonstration der Sauerstoff-Gewinnung durch Spaltung von Kohlenstoff-Dioxidmolekülen aus der Marsatmosphäre

Bereits die Landung 2021 war eine technische Meisterleistung: Nach einem siebenminütigen Abbremsmanöver durch die Marsatmosphäre setzte das Landemodul den fast tonnenschweren Rover Perseverance zehn Meter über der Oberfläche an Nylonseilen sanft auf den Marsboden ab. Das gleiche Landemanöver wurde bereits 2012 bei der Landung des Rovers Curiosity („Neugierde“) erfolgreich durchgeführt.

Das „Gesicht“ von Perseverance: SuperCam und Mastcam-Z am Kopf des Marsrovers
Dieses Bild, aufgenommen im Juli 2019 in der Montagehalle des Jet Propulsion Laboratory (JPL) in Kalifornien zeigt eine Nahaufnahme des Mastkopfes der Mars-2020-Rovers Perseverence. Im Mastkopf befindet sich ein Teil des SuperCam-Instruments, dessen Linse in der großen kreisförmigen Öffnung sitzt. In den grauen Kästchen unterhalb sind die beiden Mastcam-Z-Kameras zu sehen. An deren Außenseiten sind die beiden Navigationskameras des Rovers angebracht.
Credit: NASA/JPL-Caltech

Die große Frage: Beherbergte der Mars einst Leben?

Die nun anstehenden Schritte – zum Beispiel die gegenwärtig zwar ausgesetzte, aber technisch immer noch mögliche Rückführung ausgewählter Proben zur Erde – können die Klärung dieser und weiterer Fragen in den kommenden Jahren weiter voranbringen. Schon vor Ort konnte Perseverance an mindestens einer Stelle einen Hinweis auf mögliche Biosignaturen finden. Dieser kann allerdings nur durch die Untersuchung der an dieser Stelle erbohrten beiden Gesteinsproben auf der Erde verifiziert werden.

Ein besonderes Highlight der fünf Missionsjahre war die Untersuchung eines Felsens mit dem Spitznamen „Cheyava Falls“. Die Untersuchung lieferte einen der bisher stärksten Hinweise auf potenzielles, früheres mikrobielles Leben auf dem Roten Planeten: Der Felsen enthält ein Muster an hellen, von schwarzen, eisen- und phosphathaltigen Rändern umgebenen Flecken aus Kalziumsulfat, die an ein Leopardenfell erinnern. Diese Stoffe deuten auf chemische Reaktionen in einer wässrigen Umgebung hin, die vor Milliarden von Jahren mikrobielles Leben ermöglicht haben könnten. Die Flecken sind wahrscheinlich das Ergebnis von chemischen Prozessen, bei denen das Eisenmineral Hämatit in verwitterten Schichten umgewandelt wurde. Solche Reaktionen und Muster kennt man auch auf der Erde. Dort interpretiert man sie meist als versteinerte Überreste von Mikroorganismen. Obwohl sie als eine der stärksten Biosignaturen gelten, die je auf dem Mars gefunden wurden, ist dies kein definitiver Beweis für Leben. Die Flecken könnten auch durch rein geologische, nicht-biologische Prozesse entstanden sein.

Mastcam-Z betrachtet ihren Arbeitsbereich am Cheyava-Falls-Felsen
Perseverance setzte das Instrument Mastcam-Z am Kopf des Marsrovers ein, um den Arbeitsbereich um die von einem Felsen mit dem Spitznamen „Cheyava Falls“ entnommene Probe zu untersuchen. Ganz links ist ein Bohrloch zu sehen, aus dem der Rover am 21. Juli 2024 eine Probe entnommen hat. Rechts befindet sich der Felsen mit dem Spitznamen „Steamboat Mountain“. Auf jedem ist eine kreisförmige, weiße Abriebstelle erkennbar. Hier hat der Rover mit einem Abriebwerkzeug etwas Oberfläche des Gesteins abgetragen, um die Zusammensetzung genauer zu untersuchen. Die Bilder, aus denen diese Komposition besteht, wurden am 23. Juli 2024, dem 1.217. Tag (Sol) der Mars-2020-Mission, von der Mastcam-Z aufgenommen. Die Arizona State University leitet den Betrieb des Instruments und arbeitete dabei mit Malin Space Science Systems in San Diego an der Entwicklung, Herstellung, Erprobung und dem Betrieb der Kameras sowie mit dem Niels-Bohr-Institut der Universität Kopenhagen an der Entwicklung, Herstellung und Erprobung der Kalibrierung zusammen. Das DLR-Institut für Weltraumforschung in Berlin ist mit einem Forschungsteam maßgeblich an der taktischen und strategischen Planung von Aufnahmen mit dem Kamerasystem beteiligt.
Credit: NASA / JPL-Caltech / Malin Space Science Systems (MSSS) / Arizona State University (ASU)

Das DLR ist im internationalen Missionsteam von Mars 2020 und Rover Perseverance vertreten. So ist das DLR-Institut für Weltraumforschung in Berlin maßgeblich an der taktischen und strategischen Planung von Aufnahmen mit dem Kamerasystem Mastcam-Z beteiligt. Zudem wirken die Expertinnen und Experten an der wissenschaftlichen Auswertung und Prozessierung der Bilddaten mit. In die Bildverarbeitung fließen Erfahrungen aus Missionen wie zum Beispiel Mars Express, Dawn oder dem Lander MASCOT an Bord von Hayabusa2 ein. Diese Expertise ermöglicht es, dreidimensionale Geländemodelle zu erstellen, geologische Strukturen präzise zu analysieren und geeignete geografische Ziele für weiterführende Untersuchungen auszuwählen.

Darüber hinaus ist das Berliner DLR-Institut am operationellen Betrieb und an der Analyse von Messungen des Instruments SuperCam beteiligt – das mit der darunter angebrachten Mastcam-Z am Mastkopf von Perseverance sozusagen das „Gesicht des Rovers“ bildet. SuperCam nutzt verschiedene spektroskopische Methoden zur Analyse des Marsbodens, wobei zwei dieser Methoden einen gepulsten Laser zur Anregung verschiedener physikalischer Phänomene nutzen. Hinzu kommt die sogenannte passive Reflektions-Spektroskopie. Die verschiedenen rein optischen Methoden erlauben es, dass das SuperCam-Instrument Stellen im Abstand von mehreren Metern um den Rover herum geochemisch und mineralogisch analysiert.

Mastcam-Z
Detailaufnahme des Flugmodels der Mastcam-Z vor der Auslieferung und Montage am JPL der NASA im Mai 2019. Es ist ein Mehrfarben-Stereo-Bildgebungssystem an Bord des NASA-Marsrovers Perseverance. Es nutzt zwei fokussierbare und zoomfähige Kameras am Kopf des Roverhalses und erstellt Bilder im für das menschliche Auge sichtbaren Bereich (Rot, Grün, Blau, kurz RGB) sowie im ultravioletten und infraroten Bereich, die beide knapp außerhalb des menschlichen Sehspektrums aufzunehmen. Die Kameras liegen hier – im Vergleich zu ihrer finalen Montage am Fernerkundungsmast des Marsrovers Perseverance – auf dem Kopf. Das Taschenmesser ist etwa 10 Zentimeter lang und dient als Größenreferenz.
Credit: Malin Space Science Systems (MSSS) / Arizona State University (ASU)

Mastcam-Z verschafft 3D-Blick auf eine uralte Flusslandschaft des Mars
Mastcam-Z ist das hochauflösende, zoombare (daher das „Z“ im Namen) Kamerasystem des Rovers. Es befindet sich am Mast in etwa zwei Metern Höhe über dem Marsboden – vergleichbar mit der Augenhöhe eines stehenden Menschen – und besteht aus zwei Kameras im Abstand von 24,2 Zentimetern, die stereoskopische 3D-Aufnahmen ermöglichen. Das System liefert Panorama-Farbbilder, Videos und detailreiche Nahaufnahmen mit einer maximalen Auflösung von 1.600 mal 1.200 Pixel. Je nach Entfernung können Strukturen im Submillimeterbereich sichtbar gemacht werden. Die Zoomfunktion erlaubt es, auch weiter entfernte geologische Ziele präzise zu untersuchen. Für zusätzliche wissenschaftliche Untersuchungen verfügen die beiden Mastcam-Z-Kameras jeweils über ein Filterrad hinter der Optik. Die multispektralen Bilder helfen der Forschung dabei, die Marslandschaft auf die Vielfalt ihrer Zusammensetzung hin zu untersuchen. Die vom DLR mitverantwortete Planung der Bildsequenzen ist entscheidend, um wissenschaftlich relevante Strukturen im ehemaligen Flussdelta des Jezero-Kraters systematisch zu dokumentieren.

SuperCam
Die SuperCam an Bord des Rovers Perseverance untersucht die Zusammensetzung von Gesteinen und Böden auf der Marsoberfläche mithilfe einer Kamera, eines Lasers und unterschiedlichen spektroskopischen Methoden. Sie kann die chemische und mineralische Zusammensetzung von Stellen auf dem Roten Planeten bestimmen, die nur ein paar Millimeter groß sind – und das aus einer Entfernung von über sieben Metern. Dieses Instrument wurde vom Los Alamos National Laboratory (LANL), USA, und dem Institut de Recherche en Astrophysique et Planétologie (IRAP) / Centre National d’Etudes Spatiales (CNES) in Frankreich entwickelt. Das DLR ist am operationellen Betrieb und an der Analyse von Messungen der SuperCam beteiligt.
Credit: CNES

SuperCam – chemische und mineralogische Analyse per Laser
Die SuperCam, das „Zyklopenauge“ von Perseverance, kombiniert Kamera, Laser und mehrere Messprinzipien, um die chemische und mineralogische Zusammensetzung von Gesteinen und Böden zu bestimmen. Selbst aus einer Entfernung von über sieben Metern kann das Instrument Material analysieren, das nur wenige Millimeter groß ist.
Die vom Rover gewonnenen Daten geben Aufschluss über Entstehungsbedingungen und mögliche biologische Signaturen. DLR-Expertinnen und -Experten sind an der Erfassung und Auswertung der Spektraldaten beteiligt und tragen dazu bei, die untersuchten Stellen auf dem Mars umfangreich zu charakterisieren, vielversprechende Stellen für Aufnahmen von Bodenproben auszuwählen und diese mit möglichst vielen In-situ-Daten in Kontext zu setzen. Das DLR-Team in Berlin hat einzigartige Laborexperimente aufgebaut, die es erlauben, insbesondere die Marsdaten der SuperCam besser zu verstehen und auszuwerten.

Anklicken: Animation der Marswetterstation MEDA
Einer von zwei Windsensoren ragt aus dem Mast des NASA-Marsrovers Perseverance heraus. Diese Sensoren sind Teil des Mars Environmental Dynamics Analyzer (MEDA), dem Wetterinstrumentarium des Marsrovers Perseverance.
Credit:NASA/JPL-Caltech

MEDA – eine mobile Wetterstation auf dem Mars
Außerdem unterstützt das DLR bei der Kalibrierung von Sensoren und auch der Datenauswertung des Mars Environmental Dynamics Analyzers (MEDA), der das Marswetter erfasst. Mit MEDA verfügt Perseverance über eine umfassende Umweltmessstation. Sensoren an Mast und Rumpf des Rovers erfassen Windgeschwindigkeit und -richtung, Temperatur, Luftfeuchtigkeit sowie Eigenschaften von Staubpartikeln in der Atmosphäre des Roten Planeten.
Die kontinuierlichen Messungen liefern einen regelmäßigen „Mars-Wetterbericht“ aus dem Jezero-Krater. Das DLR-Institut für Weltraumforschung ist an der Kalibrierung einzelner Sensoren sowie an der wissenschaftlichen Analyse der Daten beteiligt. Diese Informationen sind nicht nur für das Verständnis des heutigen Klimas wichtig, sondern auch für die Planung weiterer Missionen – etwa im Hinblick auf Staubbelastung und andere atmosphärische Bedingungen, denen zukünftige Rover und auch Menschen auf der Marsoberfläche ausgesetzt sein werden.

Heimat und Arbeitsort des Rovers im Blick von Mars Express
Bereits vor der Landung von Perseverance hat die ESA-Raumsonde Mars Express – an der das DLR mit der hochauflösenden Stereokamera HRSC (High Resolution Stereo Camera) beteiligt ist – Aufnahmen und digitale Geländemodelle des Jezero-Kraters geliefert. Die HRSC an Bord von Mars Express kartierte die Region dreidimensional und dokumentierte das verzweigte Kanalsystem des ehemaligen Flussdeltas.
Diese Daten aus der Umlaufbahn des Mars-Express-Orbiters lieferten im Vorfeld der Mission Mars 2020 wichtige geologische Informationen zur Auswahl des Landegebiets für Perseverance und bilden bis heute den großräumigen Kontext für die Untersuchungen durch den Rover vor Ort.

Ein Video mit einem simulierten Überflug über den Krater Jezero auf dem Mars ist in der Originalveröffentlichung auf der Seite des DLR verfügbar (bitte nach unten scrollen): Flug über den Krater Jezero – Landestelle der Mission Mars 2020

Diskutieren Sie mit im Raumcon-Forum:

Nach oben scrollen