Kosmologie

Event Display eines W-Bosonen-Kandidaten, der im ATLAS-Experiment in ein Myon und ein Myon-Neutrino zerfällt. Die blaue Linie zeigt die rekonstruierte Spur des Myons, und der rote Pfeil kennzeichnet die Energie des unentdeckten Myon-Neutrinos. (Bild: CERN)

Verbessertes ATLAS-Ergebnis gibt Aufschluss über das W-Boson

Eine verbesserte Analyse von ATLAS-Daten zur Masse des W-Bosons steht im Einklang mit dem Standardmodell der Teilchenphysik. Eine Pressemitteilung der Johannes Gutenberg-Universität (JGU) Mainz. Quelle: JGU 23. März 2023. 23. März 2023 – Das W-Boson ist ein Elementarteilchen, das 1983 am CERN entdeckt wurde und das für die Vermittlung der sogenannten schwachen Wechselwirkung verantwortlich ist. …

Verbessertes ATLAS-Ergebnis gibt Aufschluss über das W-Boson Weiterlesen »

Nachgewiesener Neutrinokandidat im FASER-Detektor. Zu sehen ist ein Myon (rote Linie), erzeugt durch ein Neutrino im Wolfram/Emulsionsdetektor (gelb). Dabei werden auch Sekundärteilchen erzeugt, die im Interfacetracker nachgewiesen werden (gelbe Linien). (Bild: FASER-Kollaboration)

Erstmals Neutrinos aus einem Teilchenbeschleuniger beobachtet

Neutrinos gehören zu den am häufigsten vorkommenden Teilchen im Kosmos, geben Forschenden jedoch nach wie vor viele Rätsel auf. Ein internationales Team unter Beteiligung der Universität Bonn hat jetzt zum ersten Mal Neutrinos direkt beobachtet, die in einem Teilchenbeschleuniger erzeugt wurden. Eine Pressemitteilung der Rheinischen Friedrich-Wilhelms-Universität Bonn. Quelle: Rheinische Friedrich-Wilhelms-Universität Bonn 20. März 2023. 20. …

Erstmals Neutrinos aus einem Teilchenbeschleuniger beobachtet Weiterlesen »

Prof. Kai Zuber (rechts) und Steffen Turkat. (Bild: Max Osswald)

Dem Urknall auf der Spur: Der empfindlichste Detektor zur Messung von Radioaktivität steht nun in Dresden

Im Untertagelabor „Felsenkeller“ in Dresden befindet sich seit kurzem der empfindlichste Aufbau zur Messung von Radioaktivität in Deutschland und einer der empfindlichsten Aufbauten der Welt. Mit dem neuen Detektor werden die Forschenden der TU Dresden und des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) künftig an den spannendsten Fragen der Astrophysik zu dunkler Materie, Sternen oder dem Urknall auf …

Dem Urknall auf der Spur: Der empfindlichste Detektor zur Messung von Radioaktivität steht nun in Dresden Weiterlesen »

Ein Blick in das Innere des 10.000 Tonnen schweren ALICE-Detektors. Teilchenphysiker der WWU Münster sind an diesem Experiment am CERN beteiligt. (Bild: CERN - A. Saba)

WWU: Physik-Schülerworkshops geben Einblicke in Großexperiment

Vom Beginn des Universums: „International Masterclass“ am 17. Februar 2023 an der Universität Münster. Eine Information der Westfälischen Wilhelms-Universität (WWU). Quelle: WWU 10. Februar 2023. 10. Februar 2023 – Wie das Universum entstand, versuchen Wissenschaftlerinnen und Wissenschaftler aus aller Welt am Kernforschungszentrum CERN bei Genf herauszufinden. An der Forschung beteiligen sich auch Physikerinnen und Physiker …

WWU: Physik-Schülerworkshops geben Einblicke in Großexperiment Weiterlesen »

Kosmischer Mikrowellenhintergrund (Cosmic microwave background / CMB) nach Daten des Weltraumteleskops Planck. (Bild: ESA / Planck Collaboration)

Ein neuer Ansatz zur Lösung des Rätsels um die Dunkle Energie

Was steckt hinter der Dunklen Energie – und was verbindet sie mit der von Albert Einstein eingeführten kosmologischen Konstanten? Zwei Physiker der Universität Luxemburg weisen einen Weg, um diese offenen Fragen der Physik zu beantworten. Eine Pressemitteilung der Universität Luxemburg. Quelle: Universität Luxemburg 26. Januar 2023. 26. Januar 2023 – Das Universum hat etliche bizarre …

Ein neuer Ansatz zur Lösung des Rätsels um die Dunkle Energie Weiterlesen »

Das HYPER Modell deckt fast den kompletten Parameterbereich geplanter Experimente zur direkten Suche nach Dunkler Materie ab. (Grafik: Gilly Elor)

Neues Modell für Dunkle Materie

Phasenübergang im frühen Universum ändert die Stärke der Wechselwirkung zwischen Dunkler und normaler Materie. Eine Pressemitteilung der Johannes Gutenberg-Universität Mainz. Quelle: Johannes Gutenberg-Universität Mainz 23. Januar 2023. 23. Januar 2023 – Die Dunkle Materie ist nach wie vor eines der größten Rätsel der modernen Physik. Es ist klar, dass es sie geben muss, denn ohne …

Neues Modell für Dunkle Materie Weiterlesen »

Die Verdopplung des großen Schritts: Perfekter Start für das James Webb-Weltraumteleskop vor einem Jahr

Die Stimme zählte auf Französisch von zehn bis eins herunter und verkündete dann: „Décollage“ – Start. Die 15-jährige Zusammenarbeit zwischen der NASA, der ESA und der kanadischen Raumfahrtbehörde hatte gerade ihre kritischste Phase erreicht: den Start selbst. Die nächsten Ereignisse würden darüber entscheiden, ob das James Webb-Weltraumteleskop es ins All schaffen würde oder nicht. Eine …

Die Verdopplung des großen Schritts: Perfekter Start für das James Webb-Weltraumteleskop vor einem Jahr Weiterlesen »

Eine hell leuchtende Akkretionsscheibe wie ein Wasserstrudel, die um ein Zentrum zu spiralisieren scheint. Im rechten Winkel dazu wird ein Jet entlang der Rotationsachse der Akkretionsscheibe, nach oben und unten hinausgeschossen.

AstroGeo Podcast: Quasisterne in der Ferne

Die hellsten Lichter am Himmel sind gar keine Sterne, sondern nur Quasi-Sterne – und sie haben mit Sternen überhaupt gar nichts zu tun. Wie schaffen es Quasare, so hell zu leuchten? Sie sind heller als jeder Stern und halten länger durch als jede Supernova: Die allerhellsten Lichter am Himmel sind Quasare. Zwar war der Begriff …

AstroGeo Podcast: Quasisterne in der Ferne Weiterlesen »

Prof. Dr. Laura Fabbietti (rechts) diskutiert mit Laura Šerkšnytė (Mitte) und Stephan Königstorfer über die Experimente zur Antihelium-3-Wechselwirkung. (Bild: Astrid Eckert / TUM)

Dunkle Materie: Antihelium-Kerne als Boten aus den Tiefen der Galaxis

Wie entstehen Galaxien und was hält sie zusammen? Astronominnen und Astronomen gehen davon aus, dass die Dunkle Materie dabei eine essentielle Rolle spielt, nachgewiesen werden konnte ihre Existenz jedoch noch nicht. Eine Pressemitteilung der Technischen Universität München (TUM). Quelle: Technische Universität München 12. Dezember 2022. 12. Dezember 2022 – Einem Forschungsteam unter Beteiligung der Technischen …

Dunkle Materie: Antihelium-Kerne als Boten aus den Tiefen der Galaxis Weiterlesen »

Künstlerische Darstellung eines gekrümmten Raums am Beispiel des Heidelberger Experiments. Um die Raumzeit des Universums zu krümmen, werden riesige Massen oder Energien benötigt. Für die effektive Raumzeit, erzeugt durch ein Bose-Einstein Kondensat, manipulierte das Forschungsteam hingegen nur die Dichteverteilung des Kondensats. Zusätzlich wurde durch Einstellung der Wechselwirkung zwischen den Atomen Expansion simuliert. (Bild: Celia Viermann)

Universität Heidelberg: Gekrümmte Raumzeit im Labor

Raum und Zeit sind nach Einsteins Allgemeiner Relativitätstheorie untrennbar miteinander verbunden. In unserem Universum – es ist kaum messbar gekrümmt – ist die Struktur dieser Raumzeit vorgegeben. Wissenschaftlern der Universität Heidelberg ist es nun gelungen, in einem Laborexperiment eine effektive Raumzeit zu realisieren, die sich manipulieren lässt. Eine Pressemitteilung der Universität Heidelberg. Quelle: Universität Heidelberg …

Universität Heidelberg: Gekrümmte Raumzeit im Labor Weiterlesen »

Der ALICE-Detektor wird für das Upgrade geöffnet. (Bild: Sebastian Scheid Goethe-Universität Frankfurt)

ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen

Goethe-Uni koordinierte Detektor-Umbau. Eine Pressemitteilung der Goethe-Universität Frankfurt. Quelle: Goethe-Universität Frankfurt am Main 6. Dezember 2022. 6. Dezember 2022 – Den Materiezustand kurz nach dem Urknall, das sogenannte Quark-Gluon-Plasma, erforscht das ALICE-Experiment am Teilchenbeschleunigerzentrum CERN in Genf, wo Blei-Ionen miteinander kollidieren und für winzige Sekundenbruchteile ein solches Quark-Gluon-Plasma entstehen lassen. Jetzt wurden am CERN für …

ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen Weiterlesen »

Photonischer Schaltkreis in einem Glas-Chip. (Bild: Julia Tetzke Universität Rostock)

Universität Rostock: Quantenoptik im Glas

Rostocker Forschende kommen den Geheimnissen von roten, grünen und blauen Quarks-Teilchen auf die Schliche. Eine Pressemitteilung der Universität Rostock. Quelle: Universität Rostock 1. Dezember 2022. 1. Dezember 2022 – Forschenden der Universität Rostock ist es gelungen, in einem unscheinbaren Stück Glas einen Schaltkreis für Licht entstehen zu lassen. Damit konnten sie grundlegende Eigenschaften aus der …

Universität Rostock: Quantenoptik im Glas Weiterlesen »

Gas eines simulierten wechselwirkenden Galaxienpaares. (Bild: Rainer Weinberger)

Neue Forschungsgruppe soll das Gas in und um Galaxien simulieren

Dr. Rainer Weinberger wird ab 2023 am Leibniz-Institut für Astrophysik Potsdam (AIP) eine im Leibniz-Wettbewerb geförderte Forschungsgruppe mit dem Fokus auf anspruchsvolle kosmologische Simulationen leiten. Das Projekt erstreckt sich über fünf Jahre und wird mit 1 Million Euro gefördert. Eine Pressemitteilung des Leibniz-Instituts für Astrophysik Potsdam (AIP). Quelle: AIP 25. November 2022. 25. November 2022 …

Neue Forschungsgruppe soll das Gas in und um Galaxien simulieren Weiterlesen »

Numerische Simulation, die die Krümmung der Raumzeit während der Verschmelzung der beiden schwarzen Löcher darstellt. (Foto: AG Bernuzzi/Universität Jena)

Gravitationswellen – Kollision mit Schlagseite

Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert: Wie die Forschenden in der aktuellen Ausgabe des Fachmagazins „Nature Astronomy“ schreiben, kann das Signal GW190521 aus der Verschmelzung zweier schwerer Schwarzer Löcher resultieren, die sich gegenseitig mit ihrem Gravitationsfeld eingefangen haben und anschließend in schneller, exzentrischer Bewegung umeinander kollidierten. Eine …

Gravitationswellen – Kollision mit Schlagseite Weiterlesen »

Einblick in das Vakuumrohr des Beam EDM Experiments mit drei Elektroden zwischen denen sich die Neutronenstrahlen bewegen. (Bild: zvg)

Mit Neutronen-Spin-Uhren auf der Spur von Dunkler Materie

Mit Hilfe eines an der Universität Bern entwickelten Präzisionsexperiments konnte ein internationales Forschungsteam den Spielraum für die Existenz von dunkler Materie deutlich einschränken. Das Experiment wurde an der Europäischen Forschungsneutronenquelle des Instituts Laue-Langevin in Frankreich durchgeführt und liefert einen wichtigen Beitrag bei der Suche nach diesen noch unbekannten Materieteilchen. Eine Medienmitteilung der Universität Bern. Quelle: …

Mit Neutronen-Spin-Uhren auf der Spur von Dunkler Materie Weiterlesen »

Scroll to Top