Ultraschnelle Dynamik von chiralen Spinstrukturen

Ultraschnelle Dynamik von chiralen Spinstrukturen nach optischer Anregung beobachtet. Untersuchung von zeitaufgelösten Femtosekunden-Röntgenstreusignalen enthüllt schnellere Dynamik von chiraler im Vergleich zu kollinearer magnetischer Ordnung. Eine Pressemitteilung der Johannes Gutenberg-Universität Mainz.

Quelle: Johannes Gutenberg-Universität Mainz.

Eingehende zirkulare links- und rechts-polarisierte Röntgenpulse streuen unterschiedlich an chiralen magnetischen Domänenwänden, was zu einer im Differenzsignal beobachteten Asymmetrie führt.
(Bild: Frank Freimuth)

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU), der Universität Siegen, des Forschungszentrums Jülich und des Elettra-Synchrotrons in Triest hat einen neuen Meilenstein für die ultraschnelle Kontrolle des Magnetismus erreicht. Das internationale Team arbeitet an Magnetisierungskonfigurationen, die eine chirale Drehung aufweisen. Chiralität ist ein Symmetriebruch, der beispielsweise in der Natur in Molekülen vorkommt, die für das Leben essenziell sind. Die Chiralität wird auch als Händigkeit bezeichnet, da Hände ein häufiges Beispiel aus dem Alltag sind, die sich bei spiegelverkehrter Anordnung nicht überlagern lassen. Magnetisierungskonfigurationen mit fester Chiralität werden aufgrund ihrer faszinierenden Eigenschaften, wie verbesserter Stabilität und effizienter Manipulation durch Strom, intensiv untersucht. Somit versprechen diese magnetischen Texturen Anwendungen auf dem Gebiet der ultraschnellen chiralen Spintronik, zum Beispiel für ultraschnelles Schreiben und Steuern von chiralen topologischen magnetischen Objekten wie magnetischen Skyrmionen, also speziellen verdrehten Magnetisierungskonfigurationen mit aufregenden Eigenschaften.

Die in Nature Communications veröffentlichten neuen Erkenntnisse geben Aufschluss über die ultraschnelle Dynamik von chiralen Spinstrukturen nach optischer Anregung im Vergleich zu kollinearen Spinstrukturen. Nach den Erkenntnissen der Forscher wird die chirale Ordnung nach Anregung durch einen Infrarotlaser schneller wiederhergestellt als die kollineare Ordnung.

Das Team führte Kleinwinkel-Röntgenstreuungsexperimente an magnetischen Dünnschichtproben, die chirale Magnetkonfigurationen stabilisieren, durch. Die Experimente erfolgten an einem Freien-Elektronen-Laser (FEL) an der FERMI-Anlage in Triest, Italien. Die Einrichtung bietet die einzigartige Möglichkeit, die Magnetisierungsdynamik mit Femtosekunden-Zeitauflösung unter Verwendung von zirkularem links- beziehungsweise rechts-polarisiertem Licht zu untersuchen. Die Ergebnisse zeigen eine schnellere Wiederherstellung der chiralen Ordnung im Vergleich zu kollinearen Strukturen, das heißt Verdrehungen sind stabiler als gerade ausgerichtete magnetische Konfigurationen.

Kooperation mit führenden internationalen Partnern als Eckpfeiler erfolgreicher Forschung
„Dies ist ein großartiger Moment, da wir lange daran gearbeitet haben, diese Studie abzuschließen. Jetzt, da wir wissen, dass die ultraschnelle Dynamik chiraler und kollinearer Spinstrukturen unterschiedlich ist, können wir uns darauf konzentrieren, die Abhängigkeit der ultraschnellen Dynamik von den Materialeigenschaften in Angriff zu nehmen, so wie zum Beispiel die Dzyaloshinskii-Moriya-Wechselwirkung, eine Wechselwirkung, die zur Stabilisierung chiraler Spinstrukturen führen kann“, sagt Nico Kerber von der JGU, Erstautor des Artikels.

„Wir sind unseren italienischen Kollegen besonders dankbar, die einen Teil des Experiments während des Corona-Lockdowns in Europa durchgeführt haben. Diese zusätzlichen Scans waren für unsere Studie von entscheidender Bedeutung und wir freuen uns, dass hier Video-Unterstützung und der Postversand von Proben funktioniert haben. Wir freuen uns aber auch darauf, solche Experimente wieder persönlich mit unseren Kollegen am FERMI durchführen zu können“, hebt Prof. Dr. Christian Gutt von der Universität Siegen hervor, korrespondierender Autor des Artikels.

„Ich freue mich sehr über den nächsten Schritt, der unternommen wurde, um die Verwendung chiraler Magnetisierungskonfigurationen in neuartigen Spintronik-Geräten zu ermöglichen. Die internationale Zusammenarbeit mit großen Einrichtungen wie FERMI ist entscheidend, um solche Arbeiten durchzuführen, und solche Kooperationen sind ein Eckpfeiler unseres Graduiertenschulen-Programms und unserer Forschungszentren”, betont Prof. Dr. Mathias Kläui, Betreuer des Erstautors und Direktor des Profilbereichs Dynamik und Topologie (TopDyn) an der JGU. „Mit Mitteln des Sonderforschungsbereichs SFB/TRR 173 Spin+X, der Graduiertenprogramme Materialwissenschaften in Mainz, des Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz und des Profilbereichs TopDyn fördern wir diese Kooperationen.”

Veröffentlichung
Nico Kerber et al.: Faster chiral versus collinear magnetic order recovery after optical excitation revealed by femtosecond XUV scattering
Nature Communications, 9. Dezember 2020
DOI: 10.1038/s41467-020-19613-z

Diskutieren Sie mit im Raumcon-Forum:

Scroll to Top